
Bashon: A Hybrid Crowd-Machine Workflow
for Shell Command Synthesis

Yan Chen, Jaylin Herskovitz, Walter S. Lasecki, Steve Oney
University of Michigan, Ann Arbor, United States

{yanchenm, jayhersk, wlasecki, soney}@umich.edu

Abstract—Despite advances in machine learning, there has
been little progress towards creating automated systems that can
reliably solve general purpose tasks, such as programming or
scripting. In this paper, we propose techniques for increasing the
reliability of automated systems for program synthesis tasks via
a hybrid workflow that augments the system with input from
crowds of human workers. Unlike previous hybrid workflow
systems, which have been focused on less complex tasks that
crowd workers can do in their entirety (e.g., image labeling), our
proposed workflow handles tasks that untrained crowd workers
cannot do alone (i.e., scripting). We evaluate our approach by
creating BashOn, a system that increases the performance of an
automated program that generates Bash shell commands from
natural language descriptions by ∼30%. Our approach can not
only help people make program synthesis tools more robust,
reliable, and trustworthy for end-users to use, but also help lower
the cost of downstream data collection for program synthesis
when a preliminary model exists.

Index Terms—program synthesis; crowdsourcing; crowd work-
flows

I. INTRODUCTION

Bash is a complex but powerful Unix shell and user interface.
Users can parameterize and combine Bash commands to quickly
perform complex operations that would take much longer in a
Graphical User Interface (GUI). However, correctly writing a
Bash command requires complex reasoning skills and years of
practical experience. Even experienced Bash users often need
to rely on support from various resources like Stack Overflow
or man pages [1], [2] for recalling code syntax.

Although researchers have created automated systems to
help users write Bash scripts and programs from natural
language descriptions [3]–[5], they are limited to accomplishing
constrained tasks. In our tests with Tellina [4], a state-of-the-art
automated tool that translates natural language queries found
in the wild into Bash commands, we found a 10% accuracy
rate. Part of this is because currently, most automated systems
only work reliably in domains where there is sufficient, well-
organized training data [6] and the “output” of the system is
simple [7]. The only reliable source for support in complex
domains like Bash scripting is from human experts, who can
be difficult to find.

In this paper, we propose leveraging non-expert crowd
workers to boost the accuracy of an existing program synthesis
system (Tellina [4]) for generating Bash commands from
natural language descriptions. We show that despite not having
expertise with Bash scripting, crowd workers can increase the

Fig. 1. Bashon allows users to create Bash commands from natural language.
It uses a hybrid workflow that integrates crowd workers and an AI for program
synthesis. In this example, the user types a command in natural language:
“List files that are modified more than 30 days ago under the css directory” and
Bashon proposes three Bash commands. The user can press ‘Run’ to execute
any of the proposed commands

effectiveness of the fully automated system by nearly 30%. We
also introduce Bashon (Fig. 1), a user interface that uses our
hybrid workflow to allow users to generate Bash commands
from natural language descriptions.

An important feature of Bashon is that it relies on crowd
workers who do not have experience with Bash commands.
This is in contrast with previous hybrid workflow systems,
which rely on crowd workers’ ability to perform a task in its
entirety [8]–[12]. Thus, when using non-expert crowd workers,
these systems are limited to domains that have relatively
low complexity (i.e., little prior knowledge is required). A
key insight when designing Bashon is that although non-
expert workers are less effective than an automated system at
generating Bash commands, they can be effective in targeted
portions of its workflow. For example, although a given crowd978-1-7281-6901-9/20/31.00 ©2020 IEEE

Q: List all of the files in the
content directory that are

>800b but <10kb

Tellin
a

BashOn

Entity extraction

2

1

Entity extraction

9

Entity extraction

Entities: ʻContentʼ PATH
ʻ800 bytesʼ SIZE

ʻ10kbʼ SIZE
Template: List all of the
files in the PATH directory
that are larger than SIZE

but smaller than SIZE

Translation

4
 1) Find . -size +800c -size -10k
2) Find “content” -type f -size

+800c -size -10k

Translation List of commands Validation

Self-validation

6

7

Find “content” -type f
-size +800c -size -10k

Valid commands

Valid commands

10

Queries that generate invalid commands

Entity, Template

List of commandsEntity, Template

3 5

8

Fig. 2. System diagram: This diagram plots both the original Tellina (blue) and Bashon’s (green) workflow. In Tellina’s workflow, first, a natural language
query (1) is sent to an automated entity extraction process (2) which outputs a list of entities, their associated types, and the entity extracted query template (3).
Then, the neural network (4) translates the query and the extracted entities into a list of commands (5) that is sent back to the user (6). In Bashon’s workflow,
the natural language queries first go through the original Tellina system, with automated entity extraction (1-5). The results from this are then evaluated by
crowd workers (7). If they are incorrect (8), they then go to crowd workers for entity extraction (9). Commands resulting from this re-extraction process go
back to crowd workers for a final validation step (7), and the results of this are sent back to the end users (10).

worker might not be able to determine what a given Bash
command does, they can still help the system by determining
whether the result of a candidate matches the users’ intentions.
They can also support the system by leveraging their contextual
understanding to further assist in specifying commands.

We explored multiple ways to restructure the hybrid workflow
and then we compared their performance. Our experiments
demonstrated that, although the crowd struggled at times
with pieces of domain-specific information, overall they were
able to make up for places where the automated system was
lacking. Beyond Bash commands, our approach provides a
broader solution to support complex tasks like programming
by directing non-expert effort to evaluation and refinement tasks
with minimal modifications to the “black box” components of
the intelligent systems.

This paper contributes:
• Methods, challenges, and opportunities in implementing

the hybrid workflow in a program synthesis task.
• Evidence that integrating crowd workers into automated

system workflows improves performance on complex
tasks.

• Bashon, an interactive system that instantiates this idea of
a hybrid workflow in the domain of script programming.

II. RELATED WORK AND PROBLEM BACKGROUND

Our work builds on prior work in hybrid intelligence, crowd
workflows, and program synthesis.

A. Hybrid Intelligence Workflows

Crowdsourcing can be used to improve machine learning
by performing tasks that automated systems cannot do well
(e.g., entity extraction and filtering [13], [14]), validating
machine-generated results [15], and creating new training
data from which the automated systems can learn [11], [12]).
Previous studies with these automated systems show the

promise of hybrid workflows, but they rely on crowd workers’
ability to perform a task in its entirety. Systems like Tohme
and Zensors [16], [17] leverage both machine learning and
crowdsourcing techniques to augment performance in different
applications. Tohme uses this combination to detect curb ramps
in Google Street View, while Zensors creates sensor feeds that
can respond to natural language questions. In addition, studies
have shown that hybrid workflows that interleave human labor
and machine intelligence perform better than either component
alone [18], [19]. Our work explores a hybrid intelligence
workflow to integrate non-expert tasks that need to be tightly
scoped within a more complex task that requires domain
domain-specific knowledge.

B. Program Synthesis and Programming Support

Programming is a difficult task that requires years of training
and practice. Even for experienced programmers, memorizing
every syntactic rule is nearly impossible, so they have to rely on
existing resources. Many online question answering platforms,
like Stack Overflow [1], provide asynchronous support allowing
software developers to post questions to a large community.
But these sites have many limitations, such as long waiting
times to receive a response after posting a request, and non-
personalized answers [20]. Other work has used human experts
to provide support [21], but finding the right expert can be
prohibitively difficult and expensive.

There has been extensive research on how to efficiently syn-
thesize programs from natural language descriptions. Gulwani
et al. conducted a series of studies to synthesize spreadsheet
scripts by developing Domain Specific Languages (DLSs) and
synthesis algorithms to learn user-provided examples [22], [23].
But DLSs are not for programmers to read but for machines,
and they are domain-dependent. Systems like Codemend [3]
and Tellina [4] aim to translate natural language queries to
programs or scripts using automated systems trained with

expert-generated data. But the amount of data that is available
to train these systems is still small, which limits the model
performance. Our hybrid workflow requires automated modules
to operate the translation, but there is no need for a human
expert to supervise the process. Furthermore, other automated
systems often produce complex programs that are different from
what programmers usually write and may require non-trivial
manual effort to validate and troubleshoot. Bashon instead
leverages human intelligence to validate the program execution
outcomes, which we show to be an effective way of improving
its performance.

C. Tellina: Synthesizing Bash Commands

To explore the effectiveness of using hybrid workflows for
generating Bash commands, we built on Tellina [4], a state-of-
the-art fully automated system for synthesizing Bash commands.
Tellina’s automated workflow consists of three primary steps
(illustrated in Figure 2):

• Entity Extraction: This first step finds all of the entities and
types in the natural language query. This parser restricts
input to context-independent queries (e.g., no “this,” “it”),
and often requires users to refine queries using special
characters (e.g., putting "" around names, strings, and
regular expressions).

• Language Translation: This step takes the entity extracted
query template and translates it into a ranked list of
possible Bash command templates using a Recurrent
Neural Network (RNN) (sequence-to-sequence) model.
Both the list of templates and the entities extracted from
the first step are then forwarded to the Argument Filling
step.

• Argument Filling: The final step fills the argument slots
in the candidate commands with the extracted entities
to form the complete script. Users then receive a list of
full commands. However, this step does not ensure that
commands are safe, valid, or executable.

1) Performance1: The reported accuracies of Tellina are
Acc1

F = 30.0%, and Acc3
F = 36.0% where Acck

F is denoted
as the percentage of their test examples for which a correct
full command is ranked kth or higher in a list of possible
translations. According to the authors, 41 out of 50 incorrect
sample commands are caused by the mis-recognition of entities
in the first step. In addition, the generated commands need to
be validated by the users, and these commands can sometimes
be unusual and complex, which makes validation difficult.
Furthermore, this process could be very tedious and error-
prone when using a large-scale file system.

These performance limitations provide an opportunity to
introduce a hybrid workflow as a possible solution. Where
Tellina’s parser fails to extract the correct entities from a
query, human input could potentially be more accurate. Crowd
workers could also help to validate the outcomes by voting

1Tellina’s original report only has their model evaluation results, which is
what we reported in this section. Our final evaluation used and compared the
“real task” performance which they collected for their user study but without
any data cleaning process.

on the execution results, as troubleshooting is a cumbersome
process when the file system is large. However, the language
translation and argument filling steps require domain-specific
knowledge of the syntax of Bash commands, which non-expert
crowd workers might not be able to gain in a short amount of
time. So, for the translation step, we can continue to leverage
Tellina’s automated system.

III. THE BASHON WORKFLOW

The Bashon workflow consists of three steps: entity ex-
traction by the crowd, automated language translation, and
outcome validation by the crowd. The language translation
component is inherited from Tellina. Here, we will explain
how we designed and implemented the other two components.
Our system architecture (Fig. 2) is similar to Tellina’s; however,
we replace the two automated modules with crowd modules.
We then hypothesize that these two integrated modules can
each enhance the performance of Tellina and lead to an even
greater improvement when both are used together.

A. Entity Extraction by the Crowd

Prior work has shown promising results on leveraging
crowd workers for named-entity recognition tasks [24], [25].
With regard to scripting tasks, understanding the context and
semantics of a query is crucial to extracting the right entities.
Thus, our first module utilizes non-expert crowd workers to
extract entities from a natural language query. Workers are
asked to write down all of the entities in the query and select
their associated types. After computing the majority-voted
entities and extracting them from the query, the query template
is sent to be translated into the ranked command templates.

B. Outcome Validation by the Crowd

Our second module asks crowd workers to assist in validating
commands that Tellina has returned. Normally, developers need
to validate the commands from Tellina manually, which presents
a few issues: Tellina gives no guarantee that the commands are
executable, and sometimes the commands can be risky or have
unintended side effects if the developers do not carefully review
them (e.g., contains “rm”). Thus, users are often frustrated by
the syntactic errors present in the generated commands. Tellina
also sometimes suggests unusually complex commands (e.g.,
long pipelines), and their user study participants found them
“distracting even if some of these commands were correct” [4].

We instead ask crowd workers to validate and filter candidate
commands by determining if the outcomes of these commands
match the end-user’s intention. For commands that require
validating a large number of results (such as commands that are
run on a large-scale file system), we decompose the verification
step into small portions and distribute the reduced verification
tasks to different crowd workers (Fig. 3. (4)). Each worker is
then asked to use the given file system information to either
reject or accept the outcome of each command.

50 queries entities, templates

entities, templates

Lists of commands

Query: show only .pdf �les

File system output Valid commandsDivided �le system output
Execute them
on a �le system

Precision: 29.00%
Accuracy: 22.64%

Precision: 85.99%***
Accuracy: 91.99%***

Accuracy: 60.3% Accuracy: 77.04%

Entity
extraction

Translation validation

Entity
extraction50 queries

1 3 54

2

Fig. 3. A pipeline diagram that shows the precision and accuracy between each Tellina component and Bashon’s crowd component. (1) Tellina’s entity
extraction (EE) component performance; (2) Bashon’s EE component performance; (3) Tellina’s command validation component performance (filters out
commands that generate error messages); (4) both the query (e.g., show only pdf files in my folder) and the execution output of the command on a file system,
with 20 (or 21) files, were present to the crowd workers; (5) Bashon’s validation component performance.

IV. EVALUATION

To evaluate the effectiveness of our approach, we tested
three conditions to examine the accuracy of each of the two
crowd input modules, individually and together as Bashon,
compared with the accuracy of using Tellina alone (Table I).

A. Dataset

We adapted the queries used in Tellina’s original experiment—
real queries selected from online resources (e.g., Super User)—
by having researchers rewrite them to avoid the correct answer
from being found online through a keyword search. However,
we only used queries that did not aim to modify the file
system or any of its contents, as our outcome validation step
required us to run the candidate commands on an actual file
system in parallel. Ten queries were left after filtering. To
increase the validity of our task set, we recruited two Bash users
from Upwork (with 2+ years of Bash command experience)
to rephrase these 10 queries in different ways (e.g., Fig. 2), as
if they were asking the questions themselves. After this, we
had 50 queries in total.

B. Condition 1: Tellina (Baseline)

To establish a baseline, we entered all 50 queries into Tellina
and computed the performance of its entity extraction (Fig. 3.
(1)), as well as the precision of the top 1, 3, and 10 results
(Table I). The correct entities were extracted by two authors
independently, and as there can be more than one entity in
each query, we computed both the precision and accuracy.

Fig. 4. User interface of entity extraction task. Crowd workers can add one
entity at a time by typing the entity they recognize in the query to the text
box (1), and then select the type from a drop down list (2).

S1:
Tellina

(baseline)

S2: Entity
Extraction

by the Crowd

S3: Validation
by the Crowd

S4:
BashOn

Accuracy/
Precision
(Top 1)

10%
(n=50)

28.00%*
(n=50)

10%
(n=40)

38.29**%
(n=28)

Accuracy
(Top 3)

17.28%
(n=46)

45.71%**
(n=46)

21.38%
(n=29)

71.43**%
(n=21)

Precision
(Top 3)

11.11%
(0.27,n=46)

32.38%**
(0.39,n=46)

13.79%
(0.50,n=29)

46.03**%
(0.29,n=21)

Accuracy
(Top 10)

18.60%
(n=44)

51.52%**
(n=44) - -

Precision
(Top 10)

10%
(0.22,n=44)

23.03%*
(0.27,n=44) - -

Table I. Accuracy is the percentage of queries that had a correct answer in
the top k commands returned, and precision is the percentage of the top k

commands returned that were correct. S3, S4 had fewer than 10 commands
returned after filtering. n is the number of queries left at the end. Compared

to baseline: * significant at p < .05; ** significant at p < .01

Note that the accuracy of Tellina [4] reported by Lin et al.
was higher than it is in our experiment because our set of
queries has looser constraints than the set that they used [4].
The commands are judged based on their execution outcome
(e.g., the list of file names), as there could be many correct
commands and different representations of the outcome, so they
are difficult to validate automatically. The correct execution
outcome is then compared with the correct output that was
manually generated by the researchers.

C. Condition 2: Crowd-Powered Entity Extraction

We divided the 50 queries into 10 Human Intelligence Tasks
(HITs), with each HIT containing five queries. To reduce any
potential bias, we randomized the queries to minimize the
chance that a worker would receive a rephrased version of a
query they have already seen. Although prior studies like [25]
have used the crowd to extract entities, it was unclear to us how
well the crowd would be able to understand the task, as many
of the queries contained domain-specific information. Thus, we
iterated on this task by asking the crowd to provide feedback.
The issues that were most often raised were the confusing

definitions for each entity and the excess of tasks in one HIT,
as we had seven queries per HIT at the beginning. We then
clarified the definition of each entity type in the instructions
and only released five queries per HIT to increase worker
accuracy and decrease mental fatigue (See Fig. 4 for task user
interface).

In the final setting, we provided definitions of each entity
type, two detailed examples, and graphical instructions on how
to use our interface. We recruited 100 crowd workers using
a 99%-acceptance-rate filter. We then asked each worker to
extract all possible entities for five queries, and we had ten
workers parse each query. They spent about 45 seconds (S.D.
= 30.11) on average, and we paid $0.24 for each query. For
each task, there were 1.86 (S.D. = 0.61) entities on average.
After removing less precise answers (e.g., answers with a
non-existent word in the query), we computed the majority
votes (6+/10). Figure 3 (2) shows the precision and accuracy,
including our finding that the non-expert crowd outperforms the
automated process from the original workflow (1). In addition,
the accuracy of the top 1, 3, and 10 answers all significantly
increased by approximately 18%, 28%, and 33% respectively
compared to the baseline condition.

D. Condition 3: Crowd-Powered Outcome Validation

The file system we chose for this study is the same one
included in the original Tellina user study (61 files, 4 level
deep), as its large size allowed us to analyze the efficacy of
our validation strategy. We divided the file system into three
portions, with each containing 20 (or 21) files, as we found in
our preliminary study that workers could sufficiently handle
this amount. To reduce redundant work, we added a filter into
our workflow before the execution results were sent to the
crowd. We used both heuristics and static analysis [26] to filter
out obviously error-prone commands (e.g., those that generated
errors) before sending them to crowd workers.

We had nine workers vote on each outcome, and each worker
was given both the query, the outcome list, and one third of the
user’s original file system (20 or 21 files). Workers were asked
to either disapprove (if they found evidence from the given file
system that the command outcome was incorrect) or approve
(if they could not find such evidence) of each outcome. The
outcomes that were not rejected by any crowd workers were
considered correct.

We created 180 tasks (18 HITs, 3 assignments each), with
each containing 10 commands’ execution results and their
original queries. We repeated each of these tasks for each
portion of the file system for a total of 540 tasks. There were
on average 9.06 candidate commands per query (453/50), and
workers spent 23 seconds (S.D = 12.44) on average on each
one. We paid workers $0.13 for each validated execution result
for a total of $1.30 per HIT (an effective rate of ∼$20/hr).

We then took a majority vote per file portion and aggregated
the votes from all three portions. Together with the filter, this
validation component was able to correctly validate 77.04%
of commands, as shown in Figure 3. (5). The performance of
this study is on par with the baseline condition, and we found

that a portion of the queries were filtered out at the end as the
crowd identified their results invalid.

E. Condition 4: Bashon

Finally, to evaluate how both crowd components perform
jointly, we used the list of queries we generated in our second
study (S2) and ran them through Bashon’s full workflow,
which is illustrated in Figure 2. Queries were first run through
automated entity extraction and translation components, which
would save effort if they generated correct results. The results
were then validated by the filter and crowd workers. If any of
the possible outcomes were incorrect, the query was sent back
to the entity extraction step, which was performed by crowd
workers this time. The results from this extraction were used
again to translate the query with the automated component and
then re-validated by workers.

After this re-validation, we were left with two sets of
potentially correct commands. We chose to sort this list first
by the entity extraction method (Tellina’s automated system,
or crowd workers), and then by the number of crowd workers
that voted to validate a command (with the max being three).
We ranked the commands whose entities were extracted by
crowd workers higher, as our second study found human input
to have better results.

We used the same number of workers for each part as
described in the previous two studies. Table I shows the
accuracy and precision of the top 1 and 3 answers after
aggregation. Overall, we found that Bashon outperformed
all the other three workflows and significantly increased the
accuracy by 40% and 30% in the top 1 and 3 answers
respectively. We also noticed that not all queries had answers
returned by Bashon due to the low translation accuracy, and
Bashon’s final answers for some queries consisted of less than
10 candidate commands due to our filter and crowd validation.

V. DISCUSSION

Our experiments demonstrated that crowd workers without
domain knowledge can help improve the performance of natural
language shell scripting tasks. This includes checking and
interpreting command inputs and outputs to make sure a
command is behaving as expected, and providing constraints
to improve the effectiveness of existing program synthesis
techniques by marking the incorrect outputs. Our show the
potential of using non-experts to support data collection for
complex tasks with a larger and more available crowd than
existing methods, and our approach is inexpensive, requiring
$0.63 ($0.24 + $0.13 × 3) and 68s (45s + 23s) per query.
In this section, we reflect on our experiments and discuss
challenges and opportunities for future work.

A. Challenges and Solutions in Translation

Complex tasks like scripting can be difficult for both humans
and Artificial Intelligence (AI) systems to master, in part
because of the complexity and the large variation of the input
data. In our study, we found that crowd workers can extract
entities more accurately than the automated parser across a

variety of paraphrases of the same query. We believe this is
due to the fact that the automated parser does not leverage
the context when extracting, whereas humans are generally
capable of understanding the context and semantic meaning of
the query. This situation often occurs when an entity must be
understood within the context of the query. For example, one
set of queries in our study asked the program to find some
files in the "content" directory, which the automated parser
misunderstood as a request to show the content of the files.
Another example would be if the query "Copy file A to path
B" was phrased instead as "Under my path B, make a copy
of file A"; the automated system would make the opposite
prediction of which entity type is which. We propose that the
crowd could assist in finding the correct order of the entities in
a query by using information from the appropriate man page.
From the second example above, we could first pull out the
description of “copy” (i.e., cp: Copy SOURCE to DEST) and
ask the crowd to mark the entity order that matches the user’s
intent.

An additional difficulty is that the initial queries themselves
can contain errors or lack key pieces of information. Neither
Bashon nor Tellina offer any features that allow users to
clarify or get notifications regarding incomplete queries (i.e.,
missing an entity). For example, the query "Sort my PDF
files" misses a few pieces of information (e.g., “By what?”,
“Under which directory?”), which prevents any method from
reliabily generating the right answer. Our proposed solution to
this issue is to provide similar example queries and man page
templates to crowd workers. Prior work [27] has shown that
providing such gold standard examples to crowd workers can
increase the quality of their responses. Since the AI system
has a training data set, we could find similar queries from this
set, present them to crowd workers, and ask them to vote on
the completion of the query. If the crowd has access to man
page information, they may be able to identify missing entities
and ask for clarification from the user. This would make the
system more friendly to novice Bash users, as they currently
may not realize when something is missing from their requests.

B. Analysis and Challenges in Entity Extraction

Tellina’s original study found that their system had some
difficulty extracting certain semantic types, such as a date
formatted like “the 2nd of August of 2017,” or a directory
named “content,” as they were using heuristics to try to cover all
of these cases. However, we found that the crowd could identify
these entities accurately. On the other hand, some phrases
require domain knowledge to understand, and so the crowd
also had some difficulties performing the task in a different
way. For example, we found that workers identified the phrase
“long-iso format” as a date, a file name, or a pattern (when it
is actually not an entity), which led to suboptimal outcome.
Similar errors like identifying the word “regular” from the
request “List all the regular files...” as a file name, were fairly
frequent. We believe this is also due to a lack of knowledge of
Linux queries, despite our efforts in defining different entity
types. We propose two possible ways of addressing this issue:

1) having crowd workers request clarification from the user,
or 2) providing crowd workers with more examples from the
training data. However, we also noticed the expertise level
of crowd workers varies, and future work could place more
emphasis on responses from workers with more expertise.

Additionally, some extracted entity lists might look correct
in the voting mechanism we have currently, but they could
contain small errors. Mistakes like typos, excluding the units
from a size type entity, or including the word “directory” in a
file type entity are easy to interpret as correct answers. These
types of misinterpretations could easily become a majority
voted entity.

C. Analysis and Challenges in Validation

As some queries contained metadata constraints (e.g., size),
we appended the command -exec ls -lh \; after each
command before executing, as it provides the time and size
information of each file, allowing workers to evaluate the
outcome. This approach can be generalized in future work
to cover a broader set of queries: we could allow the crowd
workers to self-identify extra information they need during
the validation test, and the system could adapt the commands
accordingly.

One challenge present in our validation study is that the
generated commands may modify the files, increasing the
difficulty of validation. Although we only use queries that
do not have the intent to modify the file system, incorrect
commands may still arise, and malicious intent or bad judgment
from the crowd in the entity extraction step could lead the
system to generate problematic commands. One way to deal
with this issue is to make copies of the file system for
each command and execute the commands on the copy of
the system. This preserves the original file system, but the
computational cost is very high. Another solution is to identify
risky commands like rm in the results before running them.
This proactively prevents modification from happening, but it
requires a pre-defined list of risky commands, which is also
inefficient. We instead set the permissions of each file to read-
only, preventing non-administrator users from modifying it.
Future work in this domain can look into finding a way to
safely execute commands in an efficient way, possibly with an
interface that can generate the outcome of multiple commands
executing on the same file system.

Another challenge is that certain commands may appear
incorrect but actually generate the desired outcome. In this case,
our approach might be able to even outperform an experienced
Bash command user’s judgment. However, it is also possible
that commands could be incorrect while returning the correct
results by chance in the examples observed (i.e., they do not
generalize, or have unintended side effects). Future work could
explore how crowd-returned commands can be validated by
the user easily from a scripting perspective.

Additionally, some commands might generate excessive
information, like a long list of file names, which would be
cumbersome for any human worker to validate. We considered
limiting the length of the outcome, but for some queries long

output could be desirable. Consequently, to design tasks without
overloading workers with information while still covering a
variety of query types, we propose dividing the outcome into
pieces in the future and distributing them to multiple workers,
similar to our division of the file system.

The voting strategy that we used would fail to validate the
results of queries that request a portion of a file system relative
to other parts. For example, take the query “Find the second
largest file in my root directory.” If the file system is divided
into three portions where the first portion contains the largest
file, second portion contains the second largest file, and the
third portion contains the third largest file, none of the crowd
workers could validate the result as the requested information
is relative to what the rest of the system looks like.

Therefore, we propose a mechanism where we ask the crowd
to report evidence they found based on their portion of the
file systems that lead them to decide not to disapprove of the
given outcome. This data would then be aggregated and voted
on by crowd workers a final time. Using the same example
above, the expected evidence from the crowd would be the
number of files with sizes greater or equal to the return file, so
there would be two files shown as evidence in the aggregation
step. If the executed command returned the second one of
these files, then it would be correct. Not only would this be
a good method for allowing a larger range of commands to
be validated, but it could also serve as a double check of the
commands’ validity to ensure no mistakes have been made for
other types of commands where we would not normally have
to aggregate evidence.

D. Challenges in the Workflow

Even if the all entities are correctly extracted, the correct
command may still not be generated. We argue that this is
an issue with the original machine learning model, as even
when gold standard input data is used, sometimes incorrect
output is still generated. It is also possible that a modified
version of our workflow could be more accurate than what
we are currently using. As described previously, our workflow
has a single loop in which queries are sent back to the crowd,
after which commands from crowd workers and the automated
system are aggregated. Changing our workflow so that it loops
multiple times or only loops when the number of incorrect
commands generated is above a certain threshold are possible
alternatives. Additionally, the generated commands could be
ranked by different factors as well. Future work could explore
the effect that variations like this have on accuracy, precision,
and cost.

E. Using Non-expert Crowd for Data Collection

Although non-expert crowd workers alone are not capable of
answering these queries to produce the training data set needed
to improve an AI model, we showed that with the existing
automated system they could generate valid data (i.e., query
and command pairs) with certain accuracy. In the future, we
plan to investigate whether having the non-expert crowd help
with the program synthesis process would lighten the workload

for experienced script users and still generate useful training
data.

VI. CONCLUSION

In this paper, we implemented and evaluated a hybrid intel-
ligence workflow that augments an existing program synthesis
system to translate natural language query to Bash commands
by leveraging non-expert crowd users. Our experimental results
showed that despite not having expertise in the domain of Bash
scripting, crowd workers can significantly increase the accuracy
when integrated into targeted portions of this workflow. Our
approach sheds light on ways that other program synthesis
tools might leverage non-expert crowds to power more reliable
systems.

VII. ACKNOWLEDGEMENTS

We thank Victoria Lin, first author of the Tellina system, for
the feedback on this work, and sharing data with us. We thank
Sang Won Lee and Aubrey Ahmed for their editing assistance,
our anonymous reviewers for their helpful suggestions on this
work, and our study participants for their time.

REFERENCES

[1] S. Overflow, “Stack overflow, https://stackoverflow.com/,” 2015, accessed:
April, 2016. [Online]. Available: https://stackoverflow.com/

[2] M. Page, “Man page, en.wikipedia.org/wiki/manpage,” 2015. [Online].
Available: en.wikipedia.org/wiki/Manpage

[3] X. Rong, S. Yan, S. Oney, M. Dontcheva, and E. Adar, “Codemend:
Assisting interactive programming with bimodal embedding,” in Pro-
ceedings of the 29th Annual Symposium on User Interface Software and
Technology. ACM, 2016, pp. 247–258.

[4] X. V. Lin, C. Wang, D. Pang, K. Vu, and M. D. Ernst, “Program synthesis
from natural language using recurrent neural networks,” Tech. Rep., 2017.

[5] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron,
R. Sailesh, and S. Roy, “Program synthesis using natural language,”
in Software Engineering (ICSE), 2016 IEEE/ACM 38th International
Conference on. IEEE, 2016, pp. 345–356.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 248–255.

[7] A. Ng, “What artificial intelligence can and
can’t do right now,” 2016, https://hbr.org/2016/11/
what-artificial-intelligence-can-and-cant-do-right-now.

[8] J. P. Bigham, C. Jayant, H. Ji, G. Little, A. Miller, R. C. Miller, R. Miller,
A. Tatarowicz, B. White, S. White et al., “Vizwiz: nearly real-time
answers to visual questions,” in Proceedings of the 23nd annual ACM
symposium on User interface software and technology. ACM, 2010,
pp. 333–342.

[9] S. W. Lee and et al., “Sketchexpress: Remixing animations for more
effective crowd-powered prototyping of interactive interfaces,” in UIST.
ACM, 2017.

[10] W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J. P. Bigham, and M. S.
Bernstein, “Apparition: Crowdsourced user interfaces that come to life as
you sketch them,” in Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems. ACM, 2015, pp. 1925–1934.

[11] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and L. Zettlemoyer,
“Learning a neural semantic parser from user feedback,” arXiv preprint
arXiv:1704.08760, 2017.

[12] R. A. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and M. Veanes,
“Program boosting: Program synthesis via crowd-sourcing,” in ACM
SIGPLAN Notices, vol. 50, no. 1. ACM, 2015, pp. 677–688.

[13] S. Swaminathan, R. Fok, F. Chen, T.-H. K. Huang, I. Lin, R. Jadvani, W. S.
Lasecki, and J. P. Bigham, “Wearmail: On-the-go access to information
in your email with a privacy-preserving human computation workflow,”
2017.

https://stackoverflow.com/
en.wikipedia.org/wiki/Manpage
https://hbr.org/2016/11/what-artificial-intelligence-can-and-cant-do-right-now
https://hbr.org/2016/11/what-artificial-intelligence-can-and-cant-do-right-now

[14] D. Merritt, J. Jones, M. S. Ackerman, and W. S. Lasecki, “Kurator:
Using the crowd to help families with personal curation tasks.” 2017.

[15] J. Cheng and M. S. Bernstein, “Flock: Hybrid crowd-machine learning
classifiers,” in Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing. ACM, 2015, pp.
600–611.

[16] K. Hara, J. Sun, R. Moore, D. Jacobs, and J. Froehlich, “Tohme:
detecting curb ramps in google street view using crowdsourcing, computer
vision, and machine learning,” in Proceedings of the 27th annual ACM
symposium on User interface software and technology. ACM, 2014,
pp. 189–204.

[17] G. Laput, W. S. Lasecki, J. Wiese, R. Xiao, J. P. Bigham, and C. Harrison,
“Zensors: Adaptive, rapidly deployable, human-intelligent sensor feeds,”
in Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. ACM, 2015, pp. 1935–1944.

[18] J. W. Vaughan, “Making better use of the crowd,” 2016.
[19] J. Attenberg, P. G. Ipeirotis, and F. J. Provost, “Beat the machine:

Challenging workers to find the unknown unknowns.” 2011.
[20] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,

“Design lessons from the fastest q&a site in the west,” in Proceedings of
the SIGCHI conference on Human factors in computing systems. ACM,
2011, pp. 2857–2866.

[21] Y. Chen, S. Oney, and W. S. Lasecki, “Towards providing on-demand
expert support for software developers,” in Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. ACM, 2016, pp.
3192–3203.

[22] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation
using examples,” Communications of the ACM, vol. 55, no. 8, pp. 97–105,
2012.

[23] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in ACM SIGPLAN Notices, vol. 46, no. 1. ACM,
2011, pp. 317–330.

[24] A. Ritter, S. Clark, O. Etzioni et al., “Named entity recognition in
tweets: an experimental study,” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2011, pp. 1524–1534.

[25] T.-H. K. Huang, W. S. Lasecki, and J. P. Bigham, “Guardian: A crowd-
powered spoken dialog system for web apis,” in Third AAAI conference
on human computation and crowdsourcing, 2015.

[26] “Shellcheck, http://www.shellcheck.net/,” 2017, accessed: Sep, 2017.
[Online]. Available: http://www.shellcheck.net/

[27] S. Dow, A. Kulkarni, S. Klemmer, and B. Hartmann, “Shepherding the
crowd yields better work,” in Proceedings of the ACM 2012 conference
on Computer Supported Cooperative Work. ACM, 2012, pp. 1013–1022.

http://www.shellcheck.net/

